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Abstract--The averaged momentum and energy equations for disperse two phase flows are derived by 
extending a recently developed ensemble averaging method. The resulting equations have a 'two-fluid' 
form and the closure problem is phrased in terms of quantities that are amenable to direct numerical 
simulation. An application of the general theory is given in the dilute limit (first-order in the particle 
volume fraction), and at low particle Reynolds number. In this case, an analytical closure of the equations 
free of ad hoc approximations is explicitly given. New effects due to non-uniform particle distribution are 
identified. © 1997 Elsevier Science Ltd. All rights reserved. 
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1. INTRODUCTION 

In earlier papers (Zhang and Prosperetti 1994a, 1994b) we have presented an approach to the 
derivation of  averaged equations for disperse two-phase flows. Those papers dealt with inviscid 
suspensions of  spherical particles and bubbles respectively. The purpose of  this paper is to present 
a more systematic version of  the averaging technique, to apply it to viscous flow, and to derive 
the average form of  the energy equations of  the two phases. The results are illustrated with 
applications to slow, conduction-dominated, viscous flow. 

Our method is based on ensemble averaging but differs from earlier work in several respects. 
In the first place, we use phase ensemble averaging for the continuous phase (i.e. we average over 
all the configurations such that at time t the position x is occupied by the continuous phase), but 
not for the disperse phase. For  the latter we introduce a 'particle' ensemble average in which global 
particle attributes (e.g. the velocity of  the center of  mass) are averaged directly. A similar idea can 
be found in Anderson and Jackson (1967) and, more recently, in Jackson (1996). These papers are 
however based on volume averaging. The advantage of  particle averaging is the ability to limit the 
number  of  degrees of  freedom used in the description of  the disperse phase tailoring it to the specific 
situation at hand. For  example, for rigid particles, one can account for the constraint of  rigidity 
directly by describing each particle in terms of  its linear and angular velocity. 

Secondly, by explicitly and systematically using the 'small-particle approximation '  (Zhang and 
Prosperetti 1994a), i.e. the assumption that the particle size a is small compared with the 
macroscopic characteristic length L, we can considerably simplify the derivation of the averaged 
equations. Thirdly, unlike some of  the earlier work (e.g. Hinch 1977), we derive equations of  the 
so-called 'two-fluid' form widely used in Engineering (see, e.g. Drew 1983; Wallis 1991). 

The present approach seems to offer several major advantages on the available ones: 

(1) It is very flexible and can be applied unchanged to a wide variety of  situations. We have dealt 
with potential-flow problems in the two earlier papers already referred to. Here we study the viscous 
problem and convective-diffusive heat transfer by identical techniques. This feature is particularly 
useful in the dilute limit where explicit results can be obtained systematically in a unified way. At 
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the next higher order in the disperse-phase volume fraction, the equations of Hinch (1977) are 
recovered (Zhang 1997). 

(2) The closure problem presents itself in a form that can be effectively tackled by means of direct 
numerical simulation. We have given an example of this approach for the linear potential problem 
in Zhang and Prosperetti (1994a). Work for the nonlinear case and for Stokes flow is under way. 

(3) The method is also applicable to situations in which the mixture is not spatially uniform 
provided the ratio of the largest particle dimension to the scale of variation of the average quantities 
is smaller than O(1). This circumstance enables us to throw some new light on available results, 
e.g. for the so-called 'particle stress' and point out their limitations (section 8). 

Our methods are applicable to suspensions of solids as well as droplets. In the interest of 
simplicity of exposition, only the solid case is considered in the text. Droplets are considered in 
appendix B. A general description of the approach including details omitted here in the interest 
of brevity can be found in an expository paper by one of the authors (Prosperetti 1997). 

2. AVERAGING AND CONTINUITY EQUATIONS 

In this section we introduce and extend some definitions and results of the ensemble phase 
averaging method that will be needed below. The reader is referred to our earlier papers for details 
(Zhang and Prosperetti 1994a,b). 

We consider an ensemble of macroscopically identical suspensions of N spherical particles in a 
fluid continuous phase. We use the word configuration and the symbol 5¢ '~' to indicate the values 
of a number of degrees of freedom sufficient to specify uniquely the dynamical state of the system 
at time t. In particular, cgN will include the current values of the particles' degrees of freedom such 
as position of the center {y~}, ~ = 1, 2 . . . . .  N, center-of-mass velocity {w~}, and others.? 

Let P(N; t) be the probability density of encountering the configuration c#,, in the ensemble of 
flows at time t. Since we assume the particles to be indistinguishable, it is convenient to use the 
normalization 

f d~'¥P(N; t) = N! [2.1] 

w h e r e  dC~ N is the volume element in the phase space of the sytem. 
Let Zc,D(x; N) be the characteristic, or indicator, functions for the continuous and disperse 

phases, respectively. For a suspension of equal spherical particles of radius a an explicit 
representation is (Lundgren 1972) 

N 

ZD(X; N) = 1 -- Zc(X; N) = ~ H(a -- Ix - Y~I), [2.2] 

where H is the Heaviside distribution. In terms of these characteristic functions the volume 
fractions Ec,o of the phases are defined by 

Ec.D(x, t) = l f dcgXP(N; t)Zc,D(x; N). [2.3] 

By using the representation [2.2] it is easy to show that, as pointed out by Lundgren (1972), 

ED(X, t) = Ix d3yfd3wP(y,w;t), [2.4] 
- y l ~ < a  

?The continuous-phase degrees of freedom are entirely dependent on those of the particles only for potential and Stokes 
flow. At finite Reynolds numbers, they must be explicitly included in ~'~' to specify a configuration uniquely. 



DISPERSE TWO-PHASE FLOWS 427 

where 

1 f d~ N- ~P(N; P(y,  w; t) - P(1; t) - (N 1 ) ~ .  v t), [2.5] 

is the reduced one-particle distribution function. In [2.5] and in the following we write ~ d ~  ~- ' to 
indicate integration over all the degrees of  f reedom of  the system except the position and velocity 
o f  particle 1. 

Upon  expanding P(1; t) in Taylor  series a round x we find 

ED = nv + ~va2Wn + o -£5 nv , [2.6] 

where L is the scale o f  variat ion o f  the averaged quantities, v = ~ga 3 is the particle volume, and 
n is the particle number  density defined by 

n(x, t) = fd3wP(x, w; t). [2.71 

For  a field quant i ty  fc,D(x, t; N) pertaining to the cont inuous or disperse phase, the phase 
averages are defined by averaging over all the configurations in which the point  x is in the 
appropr ia te  phase: 

l f f c  (fC,D>(X, t) -- N!~C.D ,D(X, t; N)Zc,D(x; N)P(N; t) dC~ u. [2.8] 

A consequence of  this definition is that differentiation and averaging do not commute.  For  
example 

1 fd3w fx dS'P(Y'W;t)[( fc) ' (x ' t[y 'w)-( fc)(X' t )]n '  [2.9] VQ~c) = (Vfc )  + ec _y,=~ 

where n is the outward  unit normal  on the particle surface. Here (tic)fix, t J y, w) is the one-particle 
condit ional  average o f f c ,  i.e. the average taken only over the subset o f  the ensemble such that, 
at time t, one particle with velocity w is centered at y: 

1 f ,, OCc.D),(x, t Iy ,  w) - - (N  - d~N-'zc.o(x;N)fc.D(x,t;N)P(N - 1 [ y ,w;  t). [2.10] 
1).£C,D 

Here,  P ( N - 1 [  y, w; t ) =  P(N; t)/P(y, w; t) is the condit ional  probabil i ty and E~.o are the 
one-particle condit ional  volume fractions. 

As it stands, the integral in [2.9] is inconvenient  to evaluate as integration is over all the 
configurat ions in which there is a particle touching the point  x rather  than over a particle surface. 
To  circumvent  this difficulty, it is useful to adopt  the following procedure,  that we present in general 
terms as later it will have to be applied to several different quantities. Let r = x - y and define 

F(r, y, t) -= P(y, w; t)[(.Jc)~(y + r, t [  y, w) - (,fc)(y + r, t)]. [2.1 1] 

In the integral appearing in [2.9] r = a. In many situations o f  interest F may be expected to depend 
only weakly on the posit ion y of  the particle center so that one may use Taylor 's  theorem centered 
a round  x and write 

F(r, y, t) = F(r, x, t) - r -  VF(r, x - h, t), [2.12] 

where [hi < a and the Lagrange form of  the remainder  has been used. (In this relation, r must be 
interpreted as the distance from the particle center that has moved from the posit ion y to x). The 
idea underlying [2.12] can be further clarified with reference to figure 1. The quanti ty F defined 
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Figure 1. Illustration of the approximation used in deriving [2.13]. According to [2.9], the value of the 
integrand at the point P for all the particles touching that point is needed. The solid line shows one such 
particle centered at C. The contribution of this particle is approximated by the integrand at Q, plus a 
few terms of the Taylor series expansion. In other words, the contribution of the particle centered at C 

is approximated by that centered at P. 

in [2.11], as it appears in the integral [2.9], should be evaluated at the point  P. Equat ion [2.12] 
expresses it as its value at the neighboring point  Q, plus a correction. 

Upon  substituting [2.12] into [2.9] we then find 

E c V < r c  > = E c < V J c >  -]- (D¢#UC ] - -  V • (~D:~[flZc]), [ 2 .13 ]  

where 

= fd wp(x, w; t) dS:[(Jc) , (z ,  t[ x, w) - 4Jc)(Z, t)]n, 
- z l = a  

[2.141 

~od[/7]  = a l d ~ w l  dS:P(x  - h, w; t )[4fc) ,(z  - h, t l x - h, w) - q{-y(z - h, t)]nn, 
d dx -zL~a 

[2.151 

with h a function of  z. Note  that,  unlike [2.9], the integral in the definition [2.14] of  ~d[/c] is taken 
over the surface o f  a single particle centered at x. Further ,  it is evident that  ~ [ fc ]  is non-zero only 
insofar as the flow in the ne ighborhood of  a particle differs from the mean flow. It is, therefore, 
clear that  this term will account  for the microphysics of  the suspension. 

For  particles small with respect to the scale L of  macroscopic variat ion of  the flow, ~[/'c] can 
be expanded retaining only the first few terms to find (cf. Zhang and Prosperett i  1994a) 

Eo~eb'~] = EoJ~[/~] + v .  ( E o ~ , ] )  + v v .  (E,~[/~]) + o ~ co~f~), , [2.16] 

where 

~ofVc]=afd3wP(x,w;,)fx_,,=o d ~ ( < f c > , ¢ z , ,  C x, w) - <l~>¢z, t ) ln . ,  [2.171 

= --ha- d3wP(x, w; t) dS:[(fc),(z, t 7x, w) - OCc)(Z, t)]nnn, 
--zl=a 

[2.18] 

ED~[Jc] = ~ 3 f d3wP(x, w; t) fj -zb=, dS:[(fc)~(z, t l x, w) -- (J~.)(z, t)]nnnn. [2.19] 



DISPERSE TWO-PHASE FLOWS 429 

Clearly, the part of Sg isotropic in the last two indices is proportional to d ,  etc. While these 
properties may be useful to simplify the calculation of the integrals, they are of no particular value 
for the purposes of the present paper and their analysis will not be pursued. 

Contrary to [2.9], all these integrals are effected over the surface of a particle centered at x. This 
circumstance introduces a significant simplification, some aspects of which will be seen below. 
Furthermore, in numerical simulations, it is next to impossible to evaluate the original integral [2.9], 
while [2.14], [2.17]-[2.19] are much easier to deal with. It should be noted that an important 
situation where the expansion [2.16] is invalid is the vicinity of boundaries. Here the integral in 
[2.9] cannot be approximated. 

In our earlier studies on particles in inviscid fluids (Zhang and Prosperetti 1994a, 1994b) it was 
only necessary to carry the first term of the expansion of £~°[fc]. It will be seen below, however, 
that additional terms are necessary for consistency in the case of the viscous stress tensor and of 
the heat flux. 

A relation similar to [2.9] holds for the time derivative, but for the present purposes we only 
need to state the following transport theoremt 

&c(fc) /~f~ ) 
63-----~ + V" (Ec(fcucS) = ec \  63--7- + V- (fcuc) , [2.201 

where Uc is the velocity of the continuous phase. The time derivative in the right-hand side is taken 
at constant x, allowing the particles to move. In particular, by setting here fc = 1, we find the 
continuity equation for the continuous phase, assumed to be incompressible: 

06c 
63--7- + V" (Ec(Uc)) = 0. [2.21] 

In dealing with the disperse phase, a different kind of average proves much more useful than 
[2.8]. Let g"~(N; t) be a single-particle quantity that can be considered as belonging to the particle 
as a whole. Examples are the center-of-mass velocity and acceleration, the angular velocity, and 
many others. Then we define the average of gl '  by 

~(x, t) = n(x, t ) (N--  1)! d3w d~f s - 'P (N;  t)g°~(N; t). [2.221 

If  g"~ does not depend explicitly on the configuration of the other particles, the definition [2.22[ 
reduces to 

1 fd3wP(x, w; t)g~t~(x, w; t). [2.23] g(x, t) - n(x, t) 

A description in terms of such 'particle-averaged' quantities is particularly attractive whenever a 
resolution of the fine degrees of freedom of the particles, e.g. internal stress or detailed temperature 
distribution, is undesirable or unnecessary (see, however, the comments at the end of appendix A). 
This situation of course arises very frequently in multiphase flow. 

It can be proven that g satisfies the following transport theorem (Zhang and Prosperetti 1994a) 

63n~ dg 
63--7- ÷ V. (n~-~) = n -dT' [2.24] 

in which the time derivative in the right-hand side is taken following the motion of all the particles. 
By setting gl, = 1 in [2.24] we find an equation for the conservation of the particle number 

density 

63n 
63-7 + V. (n~) = 0, [2.25] 

t l n  Zhang and Prosperetti (1994a) this relation was derived for the case of potential flow in which the probability space 
is smaller. However, it is easy to convince oneself that the same relation holds in general. 
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where, according to [2.23], 

,f  ~(x, t) - n(x, t) &wP(x, w; t)w. [2.26] 

The velocity field defined by this relation is different from the phase-average disperse-phase velocity 
obtained from the definition [2.8] which, as is easily shown by using [2.2], can be reduced to 

~D(UD)(X, t) = ~'d3w~ d3yP(y, w; t)(UD~I(X, t l Y, w) 
d ally - xl ~< a 

= n t , ~ + f d 3 w l ,  .,<~. d3Y[P(Y' W; t ) (Uo) ' (x '  t l y' w) -- P(x '  w; t)w]" [2.27] 

Conceptually, the difference between nvfv and {~D(UD)  is that the former quantity gives the 
disperse-phase volume flux due to all the particles whose center is inside a unit (macroscopic) 
volume, while the latter only counts the disperse phase material that lies entirely within the unit 
volume. Unless the significant macroscopic length scale L is very small, therefore, the difference 
between these two quantities may be expected to be small. For example, in the case of rigid 
particles, by approximating the integrand in [2.27] by the value for a particle centered at x, setting 
y = x + (y - x), and expanding in Taylor series similar to [2.6], one finds (Zhang and Prosperetti 
1994a; Prosperetti and Zhang 1996): 

[2.281 

where g2 is the angular velocity vector of the particles around their center of mass. The two terms 
involving ff in the brackets clearly give contributions of order a2/L 2. The estimate of the rotational 
terms is more problem-dependent (e.g. heavy particles released with a high angular velocity, 
external torques, etc.) and an estimate of general validity is not possible. On the other hand, one 
can readily think of many situations of practical interest in which ~ will be of the order ofV × (uc) 
and, therefore, of order 1/L. In all such cases the difference between w and (UD) will then be of 
order aZ/L 2. As another example, for uniformly distributed non-interacting spherical drops 
translating in a quiescent liquid in the Stokes regime, one finds exactly 

(UD)(X, t) = if(X, t). [2.29] 

The phase velocity (Uo) satisfies a continuity equation analogous to [2.21], namely 

~ -{'- V "  ( { ~ D ( U D ) )  = 0 ,  [ 2 . 3 0 ]  

This reduces to [2.25] if the difference between ,~ and (UD) is disregarded and ~D is set equal to 
nv. With the same approximations, the mean volumetric flow rate of the mixture, u,,, is 

u,~ =- Ec(u¢) + ED(Uo) ~ ~c(U,') + ~D~. [2.311 

3. AVERAGE STRAIN RATE 

The continuous-phase averaged momentum equation can be derived directly by averaging the 
Navier-Stokes equation and using a relation similar to [2.9] to interchange the Laplace and the 
averaging operators. In order to study the stress system in the suspension, however, it is expedient 
to consider first the relation of the average strain rate 

(ec) = Symm{(Vuc)} = ½((Vuc) + (Vuc)T), [3.1] 
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to the macroscopic flow quantities. Here and in the following Symm{T} denotes the symmetric part 
of  the second-order tensor T. Let Ec denote the strain rate of  the average velocity field, 

Ec(x) = Symm{V(uc)}. [3.2] 

By using [2.13] and [2.16], correct to the order (a/L) required in subsequent developments, we have 

(ec)(X, t) = Ec - 1 Symm{eD~C[Uc ] _ V" (~DJ[uc]) -- VV : (Ewg~[Uc])}. [3.3] 
Ec 

According to this relation (that, being kinematic in nature, holds for general flows), the average 
strain rate depends not only on the average velocity field, but, as expected, also on the local 
particle-induced velocity fluctuations. 

As is evident from the explicit expressions [2.14] and [2.17], the reduction of  [3.3] to an explicit 
form requires information about the conditionally-averaged field (uc)l .  The case of  rigid particles 
is particularly simple as, due to the no-slip condition at the particle surface, we may write, for the 
particle centered at x, 

uc(z, t; N) = w + IJ × (z - x), [3.4] 

where ~ is the angular velocity about the center. Upon taking the one-particle conditional average 
we simply find 

(uc>~(z, t lx, w) -- w + I2 × (z - x), [3.5] 

from which, exactly, 

Symm{d[uc]} = - Ec, [3.6] 

Symm(V. (eD~-[Uc])} = Symm{V[Eo(~ - (uc))]}. [3.7] 

The term ~[uc] gives contributions of higher order in a/L. With these results, [3.3] becomes for 
rigid particles 

1 (Ec + Symm{V[Eo(ff - (uc))]}). [3.8] (ec)  = Ec 

An alternative equivalent form is 

1 Era, [3.9] (ec> = Ec 

where  Em is the strain rate of  the mean velocity field um defined by [2.31]: 

Em = Symm{Vunl}. [3.10] 

The result [3.8] is as expected because, as is readily verified, due to the continuity of  velocities across 
the interface, 

Em ---- Ec(ec) + ED(eD), [3.11] 

and the disperse-phase microscopic strain rate eo vanishes identically for rigid particles. 

4. AVERAGED MOMENTUM EQUATIONS 

We now proceed to derive the momentum equations in the 'two-fluid' form widely used in 
engineering. We use the phase average [2.8] for the continuous and the 'particle' average [2.22] for 
the disperse phase. A derivation of the momentum equation of the latter in terms of  phase averages 
is given in appendix A. 

4. I. Continuous phase 

We write the momentum equation for the continuous phase as 

c~pcUc 
c ~  + 17 ' (pcUcUc) = I 7 • trc +pcg ,  [4.1] 
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where pc is the density, g is the body force, and ac is the stress tensor. Upon using [2.13] and [2.20] 
the averaged form of this equation is 

c~ 
~ (Ecpc<uc)) + V • (pc~c<UcUc)) = ~cg • <ac) - (pal[at]  + V • (~DLP[ac]) + pcecg. [4.2] 

Upon writing explicitly the term ~[ac ]  according to the definition [2.14] we have 

l f d3wP(x, w; t) f, dS:( (ac) ,  ( a c ) ) n .  [4.31 

With the approximation [2.6], eD -~ nv, the first part  of this term will be recognized as the average 
continuous-phase force f/v per unit particle volume acting on the particle centered at x. The second 
part can be simplified by a Taylor series expansion around x to find, with an error of  order a2/L 2, 

~@[ac] = 1 [ _  V. <ac>. [4.4] 
V 

In our earlier papers (Zhang and Prosperetti 1994a, 1994b) it was sufficient to truncate the 
expansion [2,16] of  the tensor LP[ac] to its first term, namely 

~-[acl=a-q-fP(x,w;t)d3wl, d X : [ ( @ r c ) ,  - < a c ) )  • n l n .  
CD - - x l = a  

[4.51 

Proceeding as before, it is easy to show that, with an error of  order (aZ/L) 2, 

_ 
.Y-[ac] = - s - <ac>, [4.6] 

t) 

where ~ is the average stresslet-torque per particle, i.e. the first moment  of the surface traction about 
the particle center. The physical concreteness of  this term is highlighted, e.g. by the fact that, in 
a suspension of bubbles, the trace of  Y[trc] appears as a part of  the 'ambient '  pressure in the 
modified Rayleigh-Plesset equation valid in this case (Zhang and Prosperetti 1994b). The other 
terms in the expansion [2.16] of  5°[ac] are related to higher moments about the particle center of  
the surface traction. 

Upon introducing the 'kinematic '  Reynolds stress Mc by the definition 

M c  = < u ¢ ) < u ¢ )  - < u c u ¢ )  = - < ( U c  - <u~>)(u~ - < U c ) ) ) ,  [4.7] 

and using the continuity equation [2.21], we can rewrite the momentum equation [4.2] in the form 

[4.81 

The first four terms have the structure that is expected intuitively: the volume occupied by the 
continuous-phase per unit mixture volume is Ec and the particles act as a source of momentum 
of the order of their number density times the force per particle. The Reynolds transport term is 
similarly expected. The term ~ ,  showing that the particles act not only as a source of momentum,  
but also contribute to its transport, is perhaps less obvious. Its physical origin is rooted in the finite 
size of  the particles. 

For  an incompressible, Newtonian continuous phase, trc--- - p c l  + 2/~cec, where pc is the 
pressure, #c the viscosity coefficient, and I the identity tensor, so that ( a c )  = - ( p c ) l  + 21Lc(ec) 
with <ec) given by [3.3]. 
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4,2. Disperse phase 
The equation of motion for the particles, all with equal mass m, is 

rnff(x, t) = ~ dS-ac(Z, t; N)-  n + fc + r a g ,  [4.9] 
Jrx --zl=a 

where f~ is the collision force. Upon averaging this equation according to [2.22] and use of the 
transport theorem [2.24], one finds 

m ~-~ + mV • (nww) = d3wP(x, w, t) d ~ ( e c ) ,  • n + V 'ec + nmg. [4.10] 
x - z l = a  

The term ~r~ is the collision stress due to direct particle-particle interaction derived in appendix C 
(see also Sangani and Didwania 1993a; Zhang and Rauenzahn 1997). It should be noted that the 
derivation given in appendix C does not presuppose binary or short-duration collisions. 

This relation expresses the momentum balance for all the particles whose center is inside the unit 
volume. An alternative momentum equation giving the momentum balance for all the particle 
material entirely inside the unit volume can be obtained by performing the phase average of [2.8]. 
This derivation is given in appendix A. Both relations are of  course correct and their difference 
is due to the fact that they refer to different systems. However it may be expected that, whenever 
a description in terms of  averaged quantities is justified, the differences between the two 
descriptions will be small. We return on this point in appendix A. 

To put [4.10] in a more useful form, we note that 

fd3wP(x'w't)  fx -z,~a dS~(~rc)"n=EDd[~rc]+fd3wP(x'w't)fx -z,=a dX=(~rc~(Z, t) - n 

((0)2) 
= E o ~ C [ a c ] + n v V ' ( ~ r c ) ( X , t ) + O  eo Z (OC) , [4.11] 

where ~¢[ac] is defined in [4.3] and (~c)(Z, t) has been expanded in Taylor series around x thereby 
introducing an error of  order (a2/L2). Dropping the error of the same order arising by 
approximating ED by nv, we may then rewrite the momentum equation [4.10] as 

pDED ~ -  + ~"  V~ = EDV " (~c)  + EDd[~C] + pDV " (EDMD) + V " ~c + poeog, [4.12] 

where Po is the density of  the particle material. Here we have used the number density conservation 
equation [2.25] and we have introduced the kinematic Reynolds stress for the disperse phase MD 
defined by 

MD = ww -- ww = --(w -- ~)(w -- ~). [4.13] 

It will be noted that [4.12] explicitly shows the particles to respond to the continuous-phase 
pressure, rather than to some disperse-phase pressure. This feature is according to physical 
intuition. The disperse-phase pressure, i.e. the pressure inside the particles, cannot affect the motion 
of  the particles directly, but only indirectly through its relation with the continuous-phase pressure 
resulting from dynamical boundary conditions at the particles surface (see also appendix A and 
Prosperetti and Zhang 1996). This rather involved conceptual circle is avoided by the above 
procedure. Furthermore, there are cases where a disperse-phase pressure cannot even be 
meaningfully defined, as for rigid particles (see, e.g. Givler 1993). Of course, [4.12] does not imply 
that further information on the internal dynamics of the particles is not necessary, as this will be 
needed to calculate the conditionally-averaged fields. However, the type of information required 
can be tailored to the problem. For  example, the case of  rigid particles can be addressed directly 
rather than as the limit of  stiffer and stiffer particles (Drew and Lahey 1994). Similarly, in the case 
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of  gas bubbles, there is no need to solve the momentum equation in the gas, but only to state, 
for example, that the gas pressure is spatially uniform inside each bubble. 

4.3. Disperse-phase angular momentum 

The averaged particle angular momentum equation can be derived by a similar procedure. If the 
inertia of the rotational motion is considered, the phase space must be extended to include the 
angular velocities f~ of the particles. Correspondingly, the integrals ~ d3w should be changed to 

f I d ' a  
The angular momentum equation for each particle is 

j d . Q  = f dS:(z - x) × (ac .n) + L + m e ,  [4.14] 

where J is the moment of inertia of the particle, L the external torque acting on it, and m~ the torque 
due to collisions. Upon averaging this equation according to [2.23] and following the same 
procedure used to derive [4.10], we find 

+ V(n~2w) = a d3w d3~P(x, w, ~;  t) dS:n x ( (ac) ,  " n) + nL + ~ .  [4.15] 
Ix - zl = .  

The integral in the right-hand side can be connected to the skew-symmetric part of J [ a c ]  similarly 
to the calculation done above in [4.11]. The result is 

ae~jk d3w d3•p(x, w, fa; t) dS:((ac)l  " n)ink = nveuk(J[ac])ik + 0 -L . [4.16] 
z] = a 

With the neglect of the error term and use of the continuity equation [2.25], the average angular 
momentum balance for the disperse phase becomes 

- .  + ~" Vfii = --eD<,k(Y-[ac])jk +nLi  + n J ~  + ~ ,  [4,17] 
c x i  

in which 

Ma = f~ w - ~2w. [4.18] 

Since torques do not satisfy an action-reaction principle, unlike the linear momentum equation 
[4.10], the mean torque due to collisions cannot be written as a divergence. 

The momentum equations [4.8] and [4.12] and the continuity equations [2.21] and [2.25] 
constitute a general two-fluid model for disperse two-phase flows. To close the system one needs 
constitutive relations expressing the integrals sg, etc. in terms of average quantities. In principle 
these relations should be obtained by solving appropriate equations for the one-particle 
conditionally averaged fields which however, as is well known, involve other higher-order 
conditionally averaged fields and are plagued by divergent integrals (see Hinch 1977; Sangani 1991). 
The only simple case is the dilute limit, with results correct to first order in the particle volume 
fraction eD, that we address in the next section for low particle Reynolds number. The opposite 
limit of potential flow has been studied in Zhang and Prosperetti (1994a,b). It is shown in Zhang 
(1997) that, for the viscous case, the process can be continued to the next order in eD reducing the 
problem to that studied by Hinch (1977). It appears doubtful that much progress can be made 
analytically beyond these results. A more promising approach seems to be the direct calculation 
of the integrals sg, etc. by direct numerical simulation. For example, the mean force f and 
stresslet-torque ,~ appearing in [4.4], [4.6] are quantities routinely calculated in Stokesian dynamics 
(see, e.g. Brady and Bossis 1988). An example of the application of direct numerical simulation 
to the linear potential flow problem is given in Zhang and Prosperetti (1994a). 
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5. CLOSURE FOR DILUTE SUSPENSIONS 

In order to obtain results correct to first order in the disperse phase volume fraction ED, one needs 
the conditionally averaged fields correct to O(1). It is readily shown that, similarly to [2.9], the 
average of  the gradient of  any one-particle conditionally-averaged field differs from the gradient 
of  the average by a term O(ED). For  an accuracy of  order 1 this difference can therefore be 
disregarded, which leads to equations for (Uc)I and (,.pc), identical in form to those satisfied by 
the exact, unaveraged fields, i.e. [4.1]. With this truncation, the one-particle conditionally averaged 
equations form a closed system and can be solved. 

Here we carry out this procedure under the assumption that the Reynolds number for the relative 
motion of  the individual particles and the fluid is small. This will be a good approximation for 
small particles and it does not imply that the global flow on the macroscopic scale L satisfies the 
Stokes equations. 

The problem to be solved for the one-particle conditionally averaged fields is 

- V @ c > ,  + t, cV2<uc), = o, [5.1] 

V. (Uc}, = 0. [5.2] 

The solution of  these equations is subject to the condition [3.5] at the particle surface while, at large 
distance from the particle, it must satisfy 

< u c ) , ( z ,  t I x, w ) - o < u c > ( x ,  t) + (z - x ) .  V < u c ) ( x ,  t) + ' (z  - x ) ( z  - x)  : VV<uc>(x ,  t). [5.3] 

The last two terms in the right hand side are necessary to obtain a result accurate to O(a/L). This 
relation is similar to that used by Hinch (1977). Its justification ultimately rests on the assumed 
separation of scales, i.e. a << L. The influence of the fixed particle must decrease as Iz - x} becomes 
large on the scale a, but over such distances the unconditional average <Uc) (that varies over the 
scale L), is still close to its value at the particle center x. 

The problem for the conditionally averaged fields is therefore formally the same as that for the 
flow around an isolated spherical particle in the ambient flow [5.3]. The particles interact only 
through the average fields and direct particle-particle effects are negligible. 

For  rigid particles, the average of  the microscopic strain has been given before in [3.8] or [3.9]. 
By using [4.4] and the Fax6n theorem result for the force on a rigid particle in an arbitrary ambient 
flow (see, e.g. Kim and Karrila 1991, p. 78) we find, accurate to O(1) in Er,, 

d [ac]  ~ a  2 tic(# Uc>) - 3  VZ/u \ [5.41 = - -  - -  -~ ~/ /c  \ c / .  

Similarly, for Y[ac], we use [4.5] and find 

(~- - [a ' c ] ) ik  = 3 t t c ( E c ) i k  + 3 / . t c e j k , ( ~  - -  ½V x ( U c } ) , .  [ 5 . 5 ]  

The last two terms in [5.3] give contributions of  higher order in a/L to 6e[ac] and ~/'[ac] which are 
themselves higher-order corrections and can, therefore, be calculated by using the well-known 
solution for a particle immersed in a uniform flow (see, e.g. Batchelor 1967; Kim and Karrila 1991). 
The result is 

ED(Sa[ac])~jk = ¼ttCED(ff, -- (Uc,))6,~. [5.6] 

Due to the particular symmetry of  (ac) , ,  for spherical particles in the dilute limit, the contribution 
of ~[ac] is found to be O(a2/L 2) and can, therefore, be neglected. For  particles of different shape 
or at higher concentrations, however, this term gives a contribution of  order a/L and must be 
retained for consistency. 

The final quantity to be evaluated to close the momentum equations is the Reynolds stress Mc. 
This is a complex matter on which we have little to offer beyond the following comments. One 
can envisage situations (e.g. particles in a very viscous liquid) in which the only element of  
randomness at any given time is the position of the particles. In this case significant differences 
between the local instantaneous velocity uc(x, t; N) and its ensemble average value <Uc>(X, t) can 
only be due to the presence of  a nearby particle, and these differences must be of the order of the 
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particle-fluid relative velocity. This is a small quantity due to the assumption of small particle 
Reynolds number and, since Mc is quadratic in this difference, it can be neglected consistently with 
the other approximations introduced. It is also possible, however, that different particle 
arrangements cause large-scale convective motions in the mixture or that the flow is turbulent. 
Clearly, in these situations, Mc cannot be neglected. Similar arguments apply to MD. 

Upon substituting the previous results into the general forms [4.8], [4.12] of  the momentum 
equations we then have 

Ecpc + <Uc) " V(Uc) = --~cV<pc) + ~Cpcg + EcV " (2#*Em) + ~ -- (Uc)) 

- 3cvp~-V2<uc> + J~cV2[~D(~ -- (uc>)] + f • (~cMc) + 3#cV × [ED(~  - -  I V  X <Uc>)] [5.71 

) EDPD ~ -  -[- ~'  " V~ '  = - - ~ D V ( P C >  "~- 2pC(~D 17 " E c  

9/~C~D t~ -- <Uc)) + ]#c~DV2<Uc) + V • (eDMD) + ~DpDg, [5.81 

where Ec is given by [3.2] and /~* is the well-known effective viscosity of a dilute suspension of 
particles (see, e.g. Batchelor 1967) 

- -  - -  1 -~ 5~ D -~- O(~D)- [5.91 
ktc 

The two momentum equations bear of course a strong similarity to those derived by others, but 
also exhibit some important  differences. In the first place, since our method of derivation is 
applicable to the spatially non-uniform case, the relative position of ED and the spatial 
differentiation operators should be noticed. Secondly, we do find the standard Einstein viscosity 
correction, but we also have the term ¼/~cV2[ED(~ -- <Uc))] that appears to be new. In principle, this 
term confers a non-Newtonian nature to the stress-strain relation although it must be recognized 
that, in many practical circumstances, the difference (~ - <uc>) may be so small that this term 
plays a minor role. 

The two momentum equations can be combined to form a mixture momentum equation that 
will be discussed in section 8. The corresponding results for a suspension of viscous drops are 
derived in appendix B. 

For fixed particles, which would be the case in a porous medium, with the neglect of  the Reynolds 
stress and of the inertia of the continuous phase, the momentum equation [5.7] becomes 

V<pc) =/~c(1 + ~ED)V2<uc) 9Eo/~c <Uc> -- 7#c<Uc)V:ED 
2a: 

+/~c(V<uc)) T" V~D + ½ktc(V<uc)) " VED + p c g ,  [5.10] 

where [(V<uc)) T. VeD]i = (&D/OXi) (~<Ucj ) /OXi) .  In particular, for a uniform particle distribution, in 
terms of the volumetric flow rate u,, = ec<uc), 

V(pc)  = (1 + ~CD)#cV2Um 9ED/~C Um + p c g  [5.11] 

in agreement with Brinkman's  form (1947). The diffusive term is seen to require Einstein's 
expression [5.9] for the effective viscosity. Recent numerical work (Martys e t  al .  1994) seems to 
substantiate earlier experimental indications that this may not be so at finite volume fractions. 
Equations [5.10] represents a non-trivial extension of Brinkman's  equation to the case of  a 
non-uniform medium. 

To close the system one must add to the two linear momentum equations [5.7], [5.8] the equation 
for the angular momentum of the particles. Neglecting the rotational Reynolds stress [4.18] and 
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collisional effects, that are negligible to first order in co, the general angular momentum equation 
becomes, with [5.51, 

n 'O ] -[_ at + # '  V~ = 6eD/~c(JV × ( U c )  - -  ~ )  q-- nL. [5.12] 

In evaluating each one of  the quantities substituted into these equations (e.g. d[~rc], J-[ac], etc.), 
only terms of order ED and a/L have been retained. Strictly speaking, however, the final equations 
may be inconsistent in a problem-dependent way in a sense that is best explained with an example. 
Suppose that, in a particular flow, the terms dropped in the expression [5.4] for ~'[~rc] happen to 
be of  the same order of  magnitude as those retained for S[~c] in [5.6]. Then, in a formally consistent 
asymptotic analysis, also Y[ac] should be dropped. While this is a valid point, the view that we 
take is that we retain the leading-order contributions for all the terms. Should in some cases some 
of  these contributions be as small as those neglected, the error incurred will also be small. Clearly, 
this is the only possible approach if the intent is--as in the present paper- - to  derive equations of 
general applicability to a variety of  flows. 

6. AVERAGED ENERGY EQUATIONS 

The averaged energy equations for the system considered in this paper can be derived in the same 
way as the momentum equations in section 4. In this case the probability space may need to be 
enlarged to include additional degrees of freedom related to the temperature field in the particles. 

For  the continuous phase the microscopic energy equation is 

.-, F Tc ] pcc.c[_ W + v .  (Tcuc) = - V  "qc, [6.1] 

where Cpc is the specific heat and qc the heat flux. For  an isotropic material 

qc -- - KcVTc, [6.2] 

where Kc is the thermal conductivity. By using the transport theorem [2.20] together with [2.13], 
the averaged energy equation can be written as 

E ,6,, pcCpc ~(E 

where d[qc]  and £a[qc] are given by [2.14], [2.15]. The quantity aC[qc] is an effective heat source 
while Y[qc] has the nature of  an additional contribution to the heat flux. As before, the evaluation 
of  these terms requires the one-particle conditionally averaged fields. 

If  we introduce the fluctuating contribution to the convective heat flux Qc by 

Qc = pcCpc((Tc)(Uc) - (Tcuc))  = - p c C p c ( ( T c -  ( T c ) ) ( U c -  (Uc))),  [6.4] 

and use the continuity equation [2.21], the averaged energy equation [6.3] can be written as 

_ /a<:r& + ) 
p c C p c ~ c ~  (Uc}'  v ( r c )  = - e c V "  (qc} + 17. (EcQc - eDY[Rc]) + e,ag[qc]. [6.5] 

Equation [2.15] can also be used to express the average heat flux in the form 

(qc} = - {KcVTc}  = --KcV(Tc} + Kc {eDd[Tc] -- V. (eD~[Tc])}, [6.6] 
Ec 

or, from [2.16], 

(.' ) (qc)  = - -KcV(Tc)  + Kc {eDag[Tc] -- V • [ED~-[Tc] + V" (eDSg[Tc])]} + O ZSeD(Tc>, . [6.71 
gc 
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We now turn to the disperse phase. Let eD be the internal energy of  a particle. Then  we have 

d e D _  ~ dS:qc - n + vsD, [6.8] 
dt J~ ~ =,, 

where sD is the volume-averaged  heat  source density in the particle. The  particle volume-averaged 
tempera ture  is defined by 

TD m CD 
pDCpDU" [6.9] 

U p o n  taking g = eD in the t ranspor t  equat ion [2.24], we have the averaged equat ion for the 
disperse phase as 

8t + 17 ' (nWb-~D) = -- d3wP(x, w, t) ~, =,, 

By proceeding as in [4.11], this equat ion can be writ ten as 

(qc>,"  ndS :  + nVgD. [6.10] 

+ V • (nweD) = - - ~ - D ~ / [ q c ]  - -  ~ D V  ' <qc> + CDgD, [6.11] 

with an error  o f  order  a2/L 2. 
By introducing the fluctuating heat  flux similar to [6.4] 

QD = (6D'~ -- eDw) = -- (eD -- ~D)(W -- ~), [6.12] 

and using the cont inui ty equat ion [2.25], the average energy equat ion for the disperse phase 
becomes 

[6.131 

This equat ion  can also be expressed in terms of  7"D, the particle ensemble-average of  TD. A 
formula t ion  in terms of  the phase  average tempera ture  (TD> is given in appendix  A. 

The  previous results can readily be specialized to the case of  pure  conduct ion by dropping the 
convective terms in the left-hand side. 

7. EXAMPLES OF F I R S T - O R D E R  CLOSURE FOR THE E N E R G Y  EQUATION 

We now present  two simple examples  of  first-order closure for the energy equat ion in the case 
of  solid particles. For  the same reasons ment ioned at the beginning of  section 5, to O(~r~), (Tc)~ 
satisfies the usual convect ion-di f fus ion  equat ion 

~(Tc>,  
8 ~  + <Uc>,' V(Tc.>, -- DcW<Tc>,, [7.11 

where 

K~ 
Dc = • [7.2] p,-Cpc' 

is the thermal  diffusivity, and the velocity field (uc)~ is given by [5.1] and [5.2]. In order to find 
a solution correct  to O(a/L), [7.1] must  be solved subject to a condi t ion analogous  to [5.3], namely 

(Tc>,(z,  t Ix,  w ) ~ ( T c > ( X ,  t) + (z - x ) .  V(Tc>(X, t) + ~(z - x)(z - x) : VV(Tc>(x, t). [7.31 

In the calculat ions that  follow we also need an expression for (qc>~. This can be derived similarly 
to [6.6], but to the order  of  accuracy required here it is simply (qc>~ = -KcV(Tc>~. 
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In both the examples that follow we assume that the time scale z of variation of (Tc)  is such 
that the thermal penetration length ~ in either phase is much greater than the particle radius, 
although not necessarily much greater than the macroscopic length L. With this assumption the 
local problem is quasi-steady and the time derivative in [7.1] can be disregarded. 

7.1. Steady conduction 
Our first example is pure conduction in the absence of flow so that Uc = w = O. 
Let To be the volume-average temperature of particle 1. We assume that TD is the result of a 

spatially uniform volumetric heat source inside the particle and of the matching with the 
continuous-phase temperature outside. With these assumptions we find 

(Tc),(x+r,  t lx ,  w)=(Tc) (X , t )+(1  KD--Kc a 3) 
KD + 2Kc7 ~ r .  V(Tc) 

+ 1 + 3Kc + 2KD r rr:VV(Tc}+SKD+Kc 

where r is the position vector relative to the particle center. With [ 7 . 4 ]  w e  now calculate 

15 KcKo ( 7 " o - ( T c ) ) ,  [7.5] 
z~/[qc] - a 2 5Ko + Kc 

K c -  KD 
Y[qc] = 2Kc R-D-D ~ ~ V(Tc>, [7.6] 

5 KcKo 7'0)I, [7.71 
S~[qc] - 2 5Ko + Kc ((To) - 

w h i l e  ~[qc] gives a contribution of higher order in a/L. Similarly, we have 

K c -  KD v T ' 
d[Tc] ~ g2-Kc ( c>, [7.8] 

5KD (7"D -- ( Tc>)I, [7.9] 
~--[Tc] - 5Ko + Kc 

while 6e[Tc] is negligibly small. From [ 6 . 6 ]  w e  then have 

Ko - Kc "~ 5KoK~ V[ED(7"o 
( q c ) =  - 1 + KTD_7_ ~-~c eD/KcV(Tc> 5KD + Kc (Tc>)], [7.10] 

so that the averaged conduction equation becomes 

E( ) 1 d(Tc)  -EcKcg" 1 + K--£D_7~E° V(Tc) pcCpcec Ot 

K D  - -  Kc 1 15KcKD ¢D (7'D -- (Tc>) 
+2KcV" E°R--~-7- 5KcV(r~>J +SK°+Kca2  

3 5KDKc V2IEo(7, ° _ (Tc))]. [7.11] 
+ 2 5KD + Kc 

To the same order of accuracy the second term in the right-hand side can be multiplied by Cc to 
find 

EcpcCpc c~(Tc) 15 KcKo (1 + ½a2V2)[Eo(7"o -- (Tc))], [7.12] t?t -- EcV' (K*V(Tc)) + a2 5Ko + Kc 
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where 

K* ~ KD -- Kc 
~c-c= I + J~D k--~-D ~ 2-~C [7.13] 

is the effective thermal conductivity (see, e.g. Jeffrey 1973; Batchelor 1974). 
From [6.13] the equation for the mean particle temperature is 

~ t  D (7"~ - (Tc>) + ED,~D, [7.14] 
15 KcKD ~D 

nVpDCpD = eDKcV2<Tc) 5KD + Kc a 2 

The total heat flux qm in the mixture is given by 

qm = (q~> + eDY[qc] -- 22q, [7.15] 

with 12q defined in [A.14]. In the present quasi-steady case with a spatially uniform source the ~2, 
term vanishes so that, using the previous results, we find 

qm = - K * V ( T c > .  [7.16] 

7.2. Convection 

In the case of convection, neglect of the time derivative in [7.1] and in the corresponding equation 
for the particles requires not only that (Tc> vary slowly, but also that the temperature of the 
surrounding fluid, as 'seen' by the particles, be slowly varying as well. This condition implies that 
the P6clet number Pe based on the particle-fluid relative velocity, 

Pe - 2al~ - (Uc>[ 
Dc ' [7.171 

be sufficiently small. If the Prandtl number is not too large, this condition is satisfied when the 
Reynolds number is small. 

With this assumption, a closure for the convection problem requires the solution of the steady 
form of the convection~tiffusion equation [7.1] subject to the condition [7.3] at large distance from 
the particle. As shown by Acrivos and Taylor (1962), this is a singular perturbation problem whose 
solution is not available at present. However, Acrivos and Taylor have presented a solution subject 
to the conditions of uniform flow at infinity and uniform temperature on the particle surface and 
at infinity. In order to use this solution we must relax the conditions [5.3] and [7.3] and impose 
instead 

(Tc>L(zlx,  w)--,(Tc>(X), [7.18] 

<uc>L(z I x, w)~(uc>(x). [7.19] 

As a consequence, the averaged equations that we obtain have an error of order alL rather than 
o(a/L). Batchelor (1979) and others have considered the heat or mass transfer from particles in 
non-uniform Stokes flow, but still with a uniform temperature at infinity. 

In the present notation, near the particle, the solution of Acrivos and Taylor is 

{a _ ~ [ 1 ( a )  (1 3a 3a 2 a 3) ] }  
( T c ) , = ( T c ) ( X ) + ( T o - ( T c ) )  + - 1  + + - ~ + S r  2 8~r~ cos0 , [7.20] 

where the particle temperature Tt, has been assumed spatially uniform inside each particle. 
With the temperature field [7.20] we find J [Tc]  = 0 and 

so that, from [6.6], 

[7.21] 

[7.221 
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We also have 

[7.23] 

+ o( )3 [7.241 

5"[qc] = - ~(4 + Pe)Kc(7"D -- < Tc >)I. [7.25] 

Actually, in view of  the accuracy with which sC[qc] is known, most of these terms must be dropped 
for consistency. For  example, the second term of  <qc> gives a contribution 
KcV2[eD(7"D -- < Tc>)] ~ O(a3/L2), which is clearly smaller than the first neglected term in d[qc].  By 
a similar argument we see that all the terms in 5"[qc] and 5P[qc] must be dropped. The reason we 
have shown them is that these are the correct leading contributions to these quantities exhibiting 
some interesting physics. For  example, 5"[qc] is the convective transport due to the relative velocity 
of  the phases. Qualitatively, its origin lies in the same physical process that, at the molecular level, 
is responsible for ordinary conduction in a gas. In the present case of a dilute suspension of  
spherical particles the term N[qc] would not contribute even if d[qc]  were known correctly to 
O(a/L). However, it would not remain negligible for non-spherical particles or at higher 
concentrations. 

As for Qc, the comments made earlier about n c  are also applicable. In particular, one may 
expect this quantity to be negligible whenever n c  is provided the Prandtl number is not too large. 

Substitution of  the results into [6.3] leads to the average energy equation for the continuous phase 

6c + <Uc>. V<Tc> = 6cDcV:<Tc> + - - 7 -  1 + (~"D -- <Tc>) + V" (6cQc). 

[7.261 

The only difference with the conduction-diffusion equation of  a pure medium is the next-to-the-last 
term that is analogous to the Stokes drag contribution in the momentum equation [5.7]. It is readily 
shown that its form is compatible with a Nusselt number for the particles given by 2 + ½Pe (Acrivos 
and Taylor  1962). The equation for the disperse phase is 

nVpoLpnt--- ~ -  + fi~" VTo = 6DKcVZ<Tc> + ea£a + I 7 " (6DQD) 

3ED Kc(1 + ¼Pe)(7"o - <Tc>).  [7.27] a 2 

Note that, upon adding these two equations, one finds a heat flux in the mixture given by 
--KcV<Tc> rather than -K*V<Tc>.  The difference between these two quantities is comparable 
in magnitude with other terms that have not been included for the reasons previously discussed. 
Note also that, as shown by Acrivos et al. (1980), the limits of small volume fraction and small 
P6clet number cannot be interchanged. The calculation presented here corresponds to taking the 
limit 60--+0 prior to Pe--+0. 

8. DISCUSSION 

In order to compare the present results with the 'particle stress' introduced by Batchelor (1970), 
it is useful to derive equations for the total mixture momentum and energy. These equations of  
course are also of  interest in themselves as their use is sometimes advocated in place of the two-fluid 
description given before. 
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In principle, the total mixture m o m e n t u m  balance is obtained by adding to [4.8] for (u~) and 
[A9] for (up )  rather than [4.12] for ~ as, for the reasons already explained, pc-ec(Uc) and pDED(UD) 
are the m o m e n t u m  densities of  the phases in relation to the same unit volume. 

Let p,,~ and U denote the mixture density and center-of-mass velocity defined by 

p,,, = ~Pc + ~DpD, p,,~U = ~cpc(uc) + ~DpD(UD). [8.11 

Then, upon adding [4.8] and [A9] it is easy to find 

~3 
(~5 (pmU) + V. (pmUU) = - V ( ~ c ( p c ) )  + 2pcV" Em + V" (Zt + 122 + ZR + "E,) + pmg- [8.2] 

In deriving this expression we have assumed a (microscopic) stress-strain relation of  the Newtonian  
type for the cont inuous  phase. The mean strain field Em is defined in [3.10] and "E, in [A6]. 
Fur thermore ,  we have used the definitions 

`E ,  = f d3wP(x, w, ,)£ ,, =,, dS:[a( (ac) ,  " n)n - p,.((Uc)~n + n(uc),)],  [8.3] 

Z2 = V • (eD&qac]) + VV : (eD~[ac]) 

+ 2Jtc Symm{V " [eDJ--[Uc]] -- V[eD('& -- (Uc))] + VV : [eD~[Uc]]}, [8.4] 

ZR = pcecMc + pDCD((UD)(UD) -- (UDUD)) pt, pCeCeD ((UD) -- (Uc))((UD) -- (Uc)). [8.5] 
,Om 

The stress terms denoted by the £ ' s  may  be compared  with the expression for the 'particle stress' 
Z B introduced by Batchelor (1970). His original ensemble-average definition is expressed in terms 
o f  volume averages with the assumption o f  a uniform mixture. Upon  restoring the ensemble aver- 
aging and setting Z B = Z~ + Z~ + `E~, his definition [4.5] in his paper is, in the present notation,  

"E? - ( N  ~, =, d S " f  d % ¥ ~ P ( N ; t ) [ a ( a c ' n ) n - l ~ c ( u c n + n u c ) ] :  

= f d3wP(x, w, t) £ ,, :,, dS:[a( (ac) ,  " n)n - pc((Uc),n + n(uc) , ) l ,  [8.6] 

,f `E~ - N! d(gXu'u'P(N; t), [8.7] 

( N -  I)! pD d 'w '*' d3z d~  ~'' tP(N; t)f'(z - x), [8.8] 
- zl ~<. 

where u' = 7,cUc + ZDUD -- U and g is the difference between the local and the average acceleration 
of  the mixture. The term Z~ is manifestly identical to our  '£L.t Similarly, Z~ is readily shown to 
be the same as `ER. Fur thermore ,  since f '  and our  aD appering in the definition [A6] o f  Za differ 
by a constant  vector which contributes nothing to integral in [8.8], it is evident that  Z3 B equals our  
] ~ .  

Due to his assumption of  uniformity,  Batchelor 's  expression does not contain our  term '£2. 
Actually, its neglect introduces a certain inconsistency for the following reason. F rom the definition 
[8.6] we can write, in order o f  magnitude,  

[8.91 

tTo achieve this equivalence, the pressure term in [8.2] has been written as V((c(pc)) rather than in the perhaps more natural 
form V(pc) with the extra ~D(pC) incorporated in the definition of !2,. 
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while 

ED 
v .  (EDY[,'c]) ~ ~c(Uc) T" [8.101 

From these estimates, it would seem that ~ is dominant over the other term which can therefore 
legitimately be dropped. However, it is easy to convince oneself that, for spheres in Stokes flow, 
one cannot form a second-order tensor with the quantities shown in the right-hand side of  [8.9] 
so that the leading order term of 1~ must vanish. This conclusion is borne out by the explicit results 
for the dilute case. Therefore, I~ and V • (EDAe[ac]) are o f  tke same order. For example, again in 
the dilute case, we can write the total momentum equation [8.2] using the results of  appendix B 
to find 

8 
C~-- ~ (pmU) + V" (pmUU) = -Vdxpc)  + V - ~ v  [8.1 I] 

where the viscous stress tensor in the mixture Xv is given by 

2 3 ~c/~t, V[ED(# -- (Uc))]. [8.12] /~CED V" lED(re -- (Uc))]I + 4 pc + /~D 

While the #* correction comes from I;~, the other two terms are the divergence of  ED6e[ac]. In 
situations such that (Uc) and (~ - (Uc)) are comparable, all the terms in this relation have the 
same order of magnitude in a/L. In this case, the suspension will exhibit a non-Newtonian character 
even for rigid particles for which/~c//~D~0. Of course this aspect would be unimportant if, as in 
colloids, ~ "~ (Uc). 

The peculiar fact that the assumption of local uniformity gives the correct effective viscosity is 
a consequence of  the tensorial nature of Sa[ac] and Galilean invariance. Indeed, from the definition 
[2.18], the leading order term of  6e[ac] (i.e. the term of  order 0 in alL) cannot involve gradients 
of  averaged quantities and can only depend on velocities plus scalars (volume fractions, etc.). The 
only third-order tensor that can be formed with these quantities is therefore the outer product of  
a velocity and the identity tensor (cf. [5.6] in the dilute limit). On the other hand, since ~[ac] is 
Galilean invariant, it cannot depend on Um but can only depend on the relative velocity. This argu- 
ment shows therefore that the divergence of  this term cannot give a contribute proportional to Era. 

The argument given above to prove the vanishing of the dominant contribution of X~ is not 
applicable at finite particle Reynolds numbers because a quantity with the correct tensorial nature 
can be formed with the tensorial product of two velocities as showed in our earlier paper on 
potential flow (Zhang and Prosperetti 1994). In such a situation, therefore, the effective viscosity 
correction, which arises from the second term of [8.9], would be of  smaller order than the dominant 
contribution of  this term. 

While the interphase drag term d[ac]  cancels upon combining the two momentum equations, 
it would certainly remain in the other equation needed to close the system, be that one for the 
relative motion or for the motion of one of  the phases. Arguments similar to those given above 
indicate that this quantity cannot contain a term of order alL at any concentration. The only 
allowable leading order correction is of  the Fax6n type and gives a term of order a2/L 2 as found 
in the dilute limit, [5.4]. This correction is therefore of  the same order as the effective viscosity one. 
These comments show that a correction to the viscosity is only one of  several aspects in which the 
flow of  a suspension differs from that of a homogeneous fluid. 

It may also be pointed out that, while the left-hand side of  [8.2] is phrased in terms of  the 
center-of-mass velocity U, the Newtonian part of  the stress tensor features the strain field of  the 
volumetric velocity Urn. The two coincide in the case of  equal phase densities considered by 
Batchelor. 

We can also compare the results of  section 4.1 for the continuous-phase momentum equation 
with those of  Joseph and Lundgren (1990). For  this purpose we use [4.4] to rewrite the stress terms 
in the right-hand side of  [4.8] in the form 

RHS = EcV" (ac )  - EDd[ac] + V" (ED~a[ac]) 

= V" (Ec(ac)) + V " [Eo(ac) + ~a[ac])]. [8.13] 
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By expanding the terms ( ac )  in the definition of 5¢[ac1) up to O(a/L) included, we readily find 

RHS = V "(ec(ac)) + fd3w I~ dS, P(y, w; t)n(m-),(x,t l Y, w)-n. 
:,1 = a 

[8.14] 

The integral is identical to what Joseph and Lundgren denote by (6z(x)t).  However, it is difficult 
to evaluate it because the integration is over all the particles that touch the point x. The translation 
that we have effected in section 2 simplifies this task considerably. As for the other term in [8.14], 
for a Newtonian fluid, we recall [3.9] and find 

~ ( a c )  = - ~ c : @ c ) I  + uc[Vum + (VUn,)T], [8.151 

which is exactly Joseph and Lundgren's result. As these authors have remarked, the 
difference between this result and that proposed by Ishii (1975, p. 165) and others is the difference 
between 

Symm{V[,D(~ -- (Uc))]}. [8.161 

and 

S y m m { ( ~ -  (Uc))V~D}. [8.171 

While a considerable effort has been devoted to the analysis of the momentum equation, not 
much seems to have been done for the energy equation. The rather general results of Drew and 
Lahey (1993) are typical. Here we have explicitly closed the equations in some dilute-limit situations 
and we have given a formulation of greater potential usefulness for numerical simulation as will 
be discussed in section 9. The only detailed study of a problem in the heat transfer area is a paper 
by Acrivos et al. (1980). These authors studied the convection heat transfer from a fixed particle 
bed at small P6clet numbers carrying the calculation to second order in ED. Their interest lay 
however more in the calculation of the average bed temperature than in the explicit closure of the 
equations. 

A mixture energy equation can be derived by adding [6.5] and[A13] to find 

= V "  ( K c V T m )  - -  V '  ( H I  -Jff H2  - -  ]~q) ~- ED(SD) .  [ 8 . 1 8 ]  

Here, Eq is defined by [A14], Tm is the mixture temperature defined by 

Tm = Ec<Tc) + CD<TD), [8.19] 

and 

H~= fd3wP(x,w,t) f, dS:[a((qc),.n)n+ Kc(Tc),n], [8.201 
--xl=a 

H2 = V • (~D.C[qc]) + VV : ( E ~ h d )  

- Kc{V. (eDJ-[Tc]) -- V[~D((TD) - (Tc))]  + VV: (~oSP[Tc])}. [8.21] 

The combination H1 + H 2 -  r.q plays the role of 'particle heat flux' analogous to Batchelor's 
particle stress. The structure of these terms is quite comparable to the corresponding ones in 
the momentum equation and many of the previous remarks apply to this case as well. In 
particular, in the presence of convection, the description of the thermal behavior of the mixture 
will require other terms in addition to an effective thermal conductivity. Examples are given in 
[7.241 and [7.25]. 
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9. CONCLUSIONS 

We have presented a general formulation for the average momentum and energy equations in 
a suspension of spherical particles in a continuous fluid phase. The main points of the paper are: 

(1) Unlike several other studies that have focused on the calculation of the effective viscosity 
and other effective properties, we have addressed the derivation of averaged equations. The two 
approaches must be considered as complementary. The first one provides insight into the 
differences between specific situations (e.g. a fixed bed versus a sedimenting suspension). The 
present method may instead indicate general features of the equations. An example is our result 
for dilute Stokes flow, where we have found non-Newtonian effects that are, in principle, of the 
same order or larger than the viscosity correction. (Since this term contains the difference between 
the phase velocities, its importance will be small in many situations where this difference is small.) 
In obtaining this result, the applicability of the present method to cases with significant spatial 
gradients of the averaged field has been essential. 

(2) As all other averaging methods, our approach does not lead to a closed system of equations. 
At low volume fractions the closure is rather straightforward in a number of cases of which we 
have presented examples in this and previous papers. For the more interesting dense case, we believe 
that our approach offers the distinct advantage that the quantities that need to be determined, such 
as the mean force and the mean stresslet-torque per particle, are amenable to evaluation by direct 
numerical simulation. An example of a possible procedure to exploit numerical results to close the 
equations has been presented in Zhang and Prosperetti (1994a) for the linear potential problem. 
The idea is to start with an educated guess as to the possible nature of the closure relation. The 
unknown part of the closure relation is then reduced to unknown coefficients that are evaluated 
with the aid of direct numerical simulations. We are currently working on other applications of 
this idea. This approach is a promising one in view of the rapid progress in the development of 
techniques for the direct numerical simulation of the motion of particles in fluids (e.g. Durlofsky 
et al. 1987; Sulsky and Brackbill 1991; Sangani and Didwania 1993b; Claeys and Brady 1993; 
Cichocki et al. 1994; Ladd 1993; Feng et al. 1994). 

(3) By averaging Newton's equation for the particles directly, we have bypassed the problems 
connected with the evaluation and interpretation of the stress term in the disperse phase momentum 
equation. This aspect of suspension modelling has caused difficulties in the past (see, e.g. Givler 
1987; Drew and Lahey 1993; Hwang and Shen 1989). Actually, as shown in appendix A and also 
in Prosperetti and Zhang (1996), our procedure allows one to calculate this term easily and 
unambiguously. 

(4) We have applied our methods also to the derivation of the average energy equations and 
we have presented explicit closures for some dilute cases. 

(5) Our approach directly leads to equations in the 'two-fluid' form widely used in Engineering. 
Alternative formulations in terms of equations for the mixture and one of the phases follow 
immediately. 
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A P P E N D I X  A 

Phase Averaging for the Disperse Phase 

In sections 4 and 6 we have derived the disperse phase momentum and energy equations by using 
the 'particle' averaging defined in [2.22]. Here we provide an alternative treatment in terms of the 
phase-averaged quantities defined in [2.8]. This approach offers the advantage that the balance 
equations for both phases refer to the same unit volume (cf. the comments following [2.29] and 
[4.10]). It could be constructed so as to closely parallel the analysis of the continuous-phase strain 
rate given in section 3 and to lead to a momentum equation in which the average acceleration of 
the disperse phase is determined by the average stress of the disperse phase. A disadvantage of such 
a formulation, however, is the need to consider in detail the particle constitutive relation even in 
cases in which a simple model, e.g. that of a rigid particle, should suffice. For this reason we follow 
a slightly different path in which the dynamic boundary condition at the particle surface is invoked 
early on to eliminate the stress tensor of the particle material. This leads to a considerable 
simplification of the formulation. 

We start from the unaveraged momentum equation for the particle material (assumed 
incompressible for simplicity): 

C~pDUD +- V- (pDUDUD) = V 'aD, [A l] pDaD --= Ot 

where aD and aD are the acceleration and stress of the disperse phase material. 
After the application of a transport theorem similar to [2.20], namely 

OED~O) /Ofo I ~ + V " (ED(,fDUD)) = ED\ ~--7 + V" (fonD) , [A2] 

one finds 

~ (EDPD~UD)) "-~ V '  (EDpD~UDUD~) : ED~V "O'D) + EDpDg. [A3] 

From the definitions [2.8] and [2.10] one can easily show that (Zhang 1994) 

ED(V " aD) = ~ d3y f d3wP(y, w; t)(V . aD).(x, t [ y, w). [A4] 
-y]~<a 
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The integral here is over all the particles that contain the point x but, proceeding as in the case 
of  [2.13], it can be reduced approximately to one over a fixed particle to find 

e°(V'a°)=fd~wP(x'w;t)f, ~L ~.,, d3z(V:  " trD)l(Z' / ' X' W) 

where the second-order tensor E, is given by 

Y.. = - f d3wP(x, w) ~z ,L~, 

+ v - z , , + O  . ~ . ( V ' a ~ ) ,  , [A51 

d3z(V- ' aD),(Z, t l X, w)(z - x) 

=-P°fd3wP(x'w)fz x~,  d3Z(aD)L(z't [X'W)(Z-- X)" [A6] 

The first term in the right-hand side of [A5] can be further manipulated by interchanging the 
conditional averaging and the integration over the particle volume and then applying the divergence 
theorem to write it as an integral over the particle surface. Upon using the dynamic boundary 
condition 

e r o ' n  = O'c" n + S ,  [A7]  

where S denotes the surface force density, we then have 

; f. I, dawP(x, w; t) d3z(V.- " OD)l -- d3wp(x, w; t) dS.-(ac), • n 
-xl~<a -zl~a 

+ fd3we(x,w; ,) I, dS:S [AS] 
The last term is the total surface force on the particle and vanishes as shown in Prosperetti and 
Jones (1984) and Hesla et al. (1993). Finally, by [4.11], we find the following form for the disperse 
phase momentum equation: 

P°LF°~°<u°>~7 + v - (~o<uouo>)] = EDV • ( a c )  + ED.4[ac] + V • X. 

(a2 ) + p o t D g + O  ~ e o ( V ' a o ) ,  . [A9] 

It is interesting to compare this result with the one in terms of ~ given in section 4. To this end 
we use once again the transport theorem [A2] and find 

F~EO(IID) (~D(UDUD))I : J~fx_yi~ad3y P°L ~5 + V- fd3wP(y, 

We now effect a translation similar to [2.12] to obtain 

pD L ~ + V - ( E ~ K u ~ u ~ ) )  = d~wP(x, w; t) _ ~ .  

w; t)(poao)t(x,  t I Y, w). [A10] 

d3zpt)at)(z, t [ x, w)) ,  + V . Z . .  

JAil] 
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The inner integral in the right-hand side obviously equals the particle mass times its center-of-mass 
acceleration ~ so that we have 

FOED<Uo> ] -- "°L N + V'(~D<UDIID> ) : nmiv + V" ~2a. [A12] 

Upon using this relation to express the left-hand side of [A9] one recovers [4.12]. This argument 
is consistent with the earlier statement that the description in terms of ff is not an approximation 
but is just as legitimate as the one in terms of  <UD>. 

A procedure analogous to that leading to [A9] can be followed for the energy equation. The result 
is 

l 0i  + v .  (ED(UDTD>) = --eoV" <qc> -- EDSC[qc] + V ' ~ q  

where, as in [A6], 

(a2 ) + eD(SD) + O ~SeD<V'qD>, , [A13] 

l~q= -fd3wP(x,w)£_~,<.o d3Z(Z--X)<V-'qD>,(Z, tIX, W). [A14I 

In conclusion we note a possible extension of  the particle-average idea [2.22]. Even in cases in 
which the detailed internal behavior of  the particles is important, one can describe it in terms of 
global particle quantities, rather than local fields. For  instance, the flow inside a droplet may be 
broken up into an expansion in spherical harmonics rather than described by the point-wise values 
of  the velocity and pressure fields. One can then write a dynamical 'particle-average' equation for 
the coefficients of  each order of the expansion. The first equation of  this family would be the 
momentum equation [4.12]. An example of this procedure was presented in Zhang and Prosperetti 
(1994b) where an evolution equation for the radius of spherical bubbles was derived. This comment 
is presented to point out that the description in terms of particle averages is not necessarily 
approximate, but can be made, in principle, as accurate as required. A practical advantage of this 
approach is that one is not forced to deal with the entire fields, but the analysis can be limited 
to the first few coefficients. 

A P P E N D I X  B 

Suspensions of Drops 
We now give a dilute-limit closure comparable to that of section 5 for a suspension of spherical 

drops. For simplicity, we neglect the relative rotation between the drop fluid and the surrounding 
continuous phase. 

In this case the solution of  the problem requires a suitable matching of <uc>, to the flow inside 
the drop. It is easy to show that, because of  the linearity of the Stokes equations, to the accuracy 
required in ED, <UD>,, (pD>, also satisfy [5.1], [5.2]. The boundary conditions are obtained by taking 
the conditional average of  the usual statements of continuity of  velocity and tangential stress with 
the jump in normal stress needed to accommodate the effect of surface tension. To the present order 
in ED, these relations are formally identical to the unaveraged ones. As in the case of rigid particles, 
therefore, the problem for the conditionally averaged fields is formally the same as that for the 
flow around an isolated spherical drop in the ambient flow [5.3]. 

By using [4.4] and the Fax6n theorem result for the force on a drop in an arbitrary ambient flow 
(see, e.g. Kim and Karrila 1991, p. 78), accurate to O(1) in ED, we find in place of  [5.4] 

3 3 /~o 3 /~c + ~/,lD ( ~  _ <Uc> ) _1_ ~cV2<Uc>" [B1]  
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Similarly, for ~-'[ac], we use [4.5] and find 

,Y[acl = 3~/~cEc, [B21 

where 

_ ,Up + ~]~c. [B3] 
PD + ~c 

As before, the last two terms in [5.3] give contributions of  higher order in alL  to 5e[ac] and ~[ac] 
which are themselves higher-order corrections and can therefore be calculated by using the 
well-known solution for a drop immersed in a uniform flow (see, e.g. Batchelor 1967; Kim and 
Karrila 1991). The result is 

x [(if,,- (Uc,))6jk + (,7 ' ,-  (Uc~))6,k + (¢'k -- (Uck))6~j]. [B41 

Due to the particular symmetry of  (ac)~ for a spherical drop in the dilute limit, the contribution 
of N[~c] is found to be O(a2/L 2) and can, therefore, be neglected. 

We now need to calculate the stress tensor. Since V • ( a c )  ~ ( a c ) / L  appears in the equations, 
in order to calculate the average viscous stress we only need an accuracy of order alL.  It is thus 
permissible to drop the last term in the right-hand side of  [5.3] so that we can use the known 
solution for a drop in a shear flow (see, e.g. Batchelor 1967; Kim and Karrila 1991). In this way, 
the following results for the terms in the right-hand side of  [3.3] are found: 

Symm{.~[Uc]} = - ~Ec, [B5] 

1 I~c + 21~0 ( ~ . _  (Uc,))ajk + 
(Y-[Uc]),jk -- 2 t~C + ~o 

1 I~c 
10/Xc + ttD 

(G - {Uc~))(6,j6k~ + 6,k6, + fi,t6j~). [B6] 

V" (CoSe[Uc])} = O ~ 0. [B71 

Using [3.3], one then finds the average of the microscopic strain rate (ec )  for the continuous phase 
a s  

l Em 3~C~D [Ec + ½(Zc - ½(TrZc)l)], [B8] 
( e c )  = E-~ 5(~c + ~o)  k 

where 

Zc = 1 Symm{V[ED(ff -- (Uc))]}, [B9] 
•D 

and Em is the strain field of  the mean volume velocity Um defined in [3.10]. 
Since, as a consequence of [2.21] and [2.25], g •Um = 0, it follows that T r (ec )  = ( T r e c )  = 0 in 

the rigid particle limit in which #C//~D~0. However it is readily verified that, for finite ~tD, T r ( ec )  
as given by [B8] vanishes to O(eD) but not exactly. This fact is compatible with the present 
approximations, but it might be useful to deal with an exactly divergenceless form that may be 
obtained by adding to [B8] an O(eD) term. While this form may not be unique, [B8] suggests 

1 Em 3~tceo [Em + ½(Zc - ½(Tr Zc)l)l. 
( e c )  = Ec 5(~c + ~o) [BIO] 
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With the previous results, the momentum equations now become 

(a(u~) ) 
~ P q , - - g i -  + <u~> . V<uO = - < V @ c >  

+ ecV" E 1 #~Eo (Tr Zc)l + 3 2/~*E~ + 2(#c +//D) 4 / t c  - -  /~° v~[~o(* - <Uc>)] 
Itc + ,Up 

3 
3ED/tC #c + ~#D (ff -- (Uc)) 

+ a 2 pc +/2D 

+ V ' (EcMc) + Ecpcg, 

3 /~v EDjt~CV2(Uc) 
4 #c + /~D 

[Bll] 

4/~c t- /tD 

+ V • (EDMD) + eDpDg, [B12] 

where Zc, Ec are given by [B9], [3.2], and /~* is the well-known effective viscosity of a dilute 
suspension of drops (see, e.g. Batchelor 1967) 

/2* 5 - 1 + ~aED + O(Eo). [BI3] /& 

These two equations reduce to the corresponding ones previously given in section 5 upon taking 
the limit/tc//ID~0, as expected. 

A P P E N D I X  C 

Particle Collision Stress 

In this appendix we prove that the mean force resulting from direct particle contact can be 
represented as the divergence of  a suitable stress. The proof  is actually applicable to other forms 
of  direct particle interactions, such as electrostatic or other forces, but such generality is 
unnecessary here. 

Let Pc be the total force acting on particle ~ due to the direct interaction with other particles. 
We write 

= ~ f(y% y(~) w<~), wt~), c6~' 2; t) --- ~ fiN; t), [Ell 

where f(y% y(P) . . . .  ) is the direct force exerted by the particle centered at y/~ on that centered at 
y'. Clearly, this decomposition in no way implies a restriction to binary collisions, nor to 
short-duration interactions. 

According to the definition of  particle average, the average particle contact force can then be 
written as 

' ; f  nfc (N - 1)! ~,~/~ d3w¢~l dW N-]f(N; t )P(N;  t). [c2] 

Since particles ct and fl are indistinguishable, we have 

p(y(,i, y(/~), w(,), w~), CgN-2; t) = P(y(a), y% w (/3~, w% ~U 2; t), [c3] 
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and, f rom Newton ' s  third law, one can write 

f(y~, y~,  w ~, w ~/~, cC~- 2; t) = _ f(y~t~, y~i w~/~), w~, ~.~' :; t), [C4] 

f rom which, if (fP) denotes the produc t  o f  f and P, we also have 

( fp) (y~ ,  y~,  w~), w~t~, ~.,~ -2; t) = _ (fp)(y~l~l, y~, wlt~, wC~l, ~ .  2; t). [C5] 

We now make  a change of  variables f rom y<~ ,y~ , . . . , y<~)  to y~t~) r~ . . . . .  r~, where 
r ~) = y<~J - y</ ' ) , . . . ,  r CN~ = y<~ - y~/~ and write 

_ (fp)(y(,), y~), w~,~, w<~), ~u 2; t) = -- (fP)(y~/~', r ~), r ~1, ~ x  - ~_; t). [C6] 

Here  we use ~ - :  as shor t -hand  for w ~, w ~ and all the (r;, w ~) with 7 4: a,/~. 
N o w  we apply  Tay lo r ' s  theorem to the r ight-hand side of  [C6] as done above  for [2.9] and write 

(fp)(y~), r~,, ~ u  - 2; t) = ( fP)(y~,  r ~, ~ N -  ~; t) -- r ~ • V,.~(fP)(y ~ + h, r ~', ~,x - :; t), [C7] 

where h = h(y ~, r ~), ~ -  :; t), and Ihl < IrefUl. This relation essentially states that  the interaction force 
when the particles have certain posi t ions equals tha t  that  would prevail  if all the particles were 
rigidly t ranslated by - r  ~), leaving their velocities unchanged,  plus a correct ion term. 

U p o n  subst i tut ion of  the r ight-hand side of  [C7] into [C2] and change of  the integrat ion variables 
f rom y ~ , . . . ,  y(~ to r ~, . . . ,  r ~ we have 

nf~ -- (N / ~  d3r~ d~X-z(fP)(Y~')' r~ '  ~N-2;  t) 

+ (N 1)~ ~ V,..," d~r ~ d ~  N- : r~(fP)(y  ~> + h, r ~, ,~'~ 2; t), [C8] 

where the vector  index of  the gradient  is the same as that  o f  r ~. Note  that  the integrat ion over  
w ~ is included in d ~  N- ~. and tha t  the dependence on the index ~ is implicit in the definition of  
r (~). 

By changing now the integrat ion variables to 

z ~  = Y~) + r~) . . . . .  z~'~ = Y~ + r~'~, 7 ~: ~,/~, [C9] 

we can rewrite [C8] as 

_ C~N- : .  t )  nf~ = ( N -  1 ) !  

+ 2 V ' ( e o a ~ ) ,  [C10] 

where o~ is the par t ic le-par t ic le  contac t  stress defined, after a renaming of  the variables, by 

× (y~e~ _ y~,))/(fp)~(yl~) + h, y~/~, w~), w~l~), ~ - : ;  t). [C11] 

Other  than  for the name  of  the integrat ion variables,  the integral in [C10] is identical with that  
in the definition [C2] of  n-~, so that  we may  write 

n't~ = -n'f~ + 2V.  (~oa~), [C12] 

f rom which 

n]'~ = V • (~Do~). [C13] 
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In this way we have rigorously proven that the average force resulting from direct particle contact 
can be written as the divergence of a stress tensor. This proof  generalizes a similar one in kinetic 
theories of  molecular transport and rapid granular flows, where binary collisions are assumed (Lun 
et al. 1984). Sangani and Didwania (1993a) have given a similar proof  for binary collisions of  
spheres in an inviscid fluid. In the proof  presented here, the assumptions of binary, or very brief, 
contacts are unnecessary. These features are particularly important in the study of the rheological 
properties of  a dense collection of particles. Based on [C11], a visco-elastic model for the slow flow 
of  resin-coated sand has been developed (Zhang and Rauenzahn 1997). 

If the maximum distance for particle-particle contact is much smaller than the macroscopic 
length scale, the term h in the definition of ac can approximately be set to zero, which amounts 
to retaining only the first correction in the Taylor series expansion of [C7]. This procedure is 
standard in all previous derivations. A detailed study of the consequences of dropping higher order 
terms has not yet been carried out. 

In order to compare our result for tr¢ with the corresponding one in the theory of rapid granular 
flow, we rewrite the expression [C11] in terms of conditional averages with two particles fixed: 

1 ~ d y (yj Yi )~ (Y , y~21, w~), ED(O'c)ij = ~ d3wtl/d3w(2) 3 ,(2) (21 _ 01 2) ,i w~:l; t)P(y,l, yt21, W(I) W(2); t). [C14] 
.J 

For  the case of  binary collisions of smooth, slightly inelastic particles, it is easy to see that the 
conditional force can be calculated as 

~2/= --½(1 + e)m(q-n)2n6(ly ~21- y/~t[ _ 2a), q . n  > O, [C15] 

where q = w 12) - w "), and e is the coefficient of restitution. Substituting this into [C14], one finds 

eO6c = --2(1 + e)a3m fq .>o p(y01, y~:l, w,i, w~:), t)(q • n)2nn d3w 01 d3w ~21. [C16] 

This is identical to [3.6] in Lun et al. (1984) or [2.19] in Savage and Jeffrey (1981). 
Since the individual torques resulting from the contact of two particles are not necessarily equal 

and opposite, in general the average torque cannot be written as a divergence. Indeed, in the case 
of  rapid granular flow, a source term has to be included in the angular momentum equation (Lun 
1991). 


